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Wave interaction between adjacent slender bodies 
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A linear approximation for surface-wave radiation by two adjacent slender bodies 
is derived and compared with a three-dimensional numerical method. The approx- 
imation incorporates slender-body theory for a single body and accounts for wave 
interaction between the bodies. It is assumed that the distance between the bodies 
is on the order of their lengths. The far-field disturbance due to each body is obtained 
by distributing wave sources and dipoles on its centreline and solving a pair of coupled 
integral equations for their strengths and moments respectively. The hydrodynamic 
added-mass and damping coefficients are then calculatcd from simple expressions 
involving the source strengths and the hydrodynamic coefficients of each body 
separately. Wave exciting forces are also calculated from a far-field reciprocity 
relation. The approximation performs well even when the separation distance is 
comparable to the characteristic transverse dimension of each body. 

1. Introduction 
Predicting the wave-induced motions of a twin-hull ship is a practical problem 

involving wave interaction between adjacent slender bodies. Closely related situations 
include two ships transferring cargo at sea or a conventional ship operating near a 
harbour or a channel boundary. Periodic structures such as the piers of a bridge can 
be modelled as an array of slender bodies. In all of these cases, first-order wave forces 
can be determined by neglecting viscous effects, linearizing the boundary conditions 
and decomposing the problem into radiation and diffraction components. Numerical 
solutions of the associated linear boundary-value problems by boundary-integral or 
finite-element methods are possible, but the computational effort can be prohibitive 
when multiple bodies are present. Aside from these general numerical techniques, 
exact accounts of wave interaction among an array of vertical, axisymmetric 
cylinders have been derived first in the context of acoustics by Twersky (1952), and 
later for surface waves by Spring & Monkmeyer (1974), and Miles (1983). Approximate 
treatments of wave interaction among non-axisymmetric bodies separated by 
sufficiently large distances have been presented by Ohkusu (1974), Greenhow (1980), 
Simon (1982), and Kagemoto & Yue (1985). Ohkusu (1974), Srokosz & Evans (1979), 
and Martin (1984) have approximated wave interaction between two-dimensional 
bodies that are far apart. Typically, the multiple-body problem is reduced to a set 
of radiation-diffraction problems for each body separately, the solutions of which are 
then combined analytically to approximate the wave-interaction effects. 

A different class of approximate methods has evolved for treating radiation and 
diffraction by conventional mono-hull ships. The slenderness of the ship geometry 
justifies approximating the flow near the ship by a sequence of two-dimcnsional 
problems. Pioneered in naval architecture by Korvin-Kroukovsky (1955), this 
approach is known as ‘strip theory’ and has undergone a number of refinements 
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primarily aimed a t  accounting for forward-speed effects. Ogilvie & Tuck (1969) 
presented a rational justification of strip theory and showed that the absence of 
longitudinal hydrodynamic interaction can be formally justified for high frequencies, 
corresponding to  wavelengths comparable to  the ship beam. The high-frequency 
restriction has been removed in the ‘unified theory ’ derived by Newman (1978) and 
Sclavounos (1984) where the strip-theory solution near the ship is supplemented by 
a homogeneous component which accounts for longitudinal hydrodynamic interaction. 
The strength of the homogeneous component is determined by using the technique 
of matched asymptotic expansions. 

Unified theory is applied in the present study to solve the zero-speed mono-hull 
problem, and is extended to  include wave interaction between adjacent slender bodies 
with no forward speed. To simplify the derivation, we consider two identical hulls 
which are symmetric about their own centreplanes and rigidly connected in a 
catamaran configuration. Generalizations to cases where the hulls do not satisfy all 
of these conditions present no additional fundamental difficulties. For the sake of 
generality, the hulls will hereafter be referred to as bodies. 

Intuitively, the interactions between two bodies can be viewed as follows. Each 
body radiates waves due to  its own oscillatory motion as if the other body were not 
present. Some of the waves radiate to infinity and some interact with the adjacent 
body. The steady-state oscillatory solution may be viewed as the limit of a flow that 
started from rest and evolved through an infinite number of wave reflections. This 
approach calls for the treatment of an  infinite series of single-body retlection/trans- 
mission problems, the summation of which leads to the steady-state flow, and has 
been used by Ohkusu (1974) to  approximate interaction between two-dimensional 
bodies and among an array of vertical cylinders in three dimensions. I n  the 
two-dimensional case, Ohkusu assumes that the bodies are far enough apart to neglect 
non-wavelike behaviour and sums the infinite series analytically to  obtain simple 
expressions for the hydrodynamic coefficients and exciting forces. Non-wavelike 
behaviour is accounted for in the three-dimensional case, but it is not possible to sum 
the infinite series. 

An alternative view of wave interaction is typified by Simon (1982). The wave 
disturbancc in the vicinity of each body is the sum of a radiation component resulting 
from its own single-body radiation, an ‘incident wave’ representing the influence of 
the adjacent body, and a diffraction component corresponding to that incident wave. 
The amplitude of the incident wave is a priori unknown and is determined by 
enforcing a set of compatibility conditions on the wave disturbance in the vicinity 
of each body. Simon approximates the cumulative incident wave by a plane wave ; 
thus non-wavelike effects are neglected. 

The three-dimensional approximations of Ohkusu and Simon are suitable only for 
mult,iple compact bodies such as vertical cylinders. For such bodies i t  is appropriate 
and convenient to assume that the wave disturbance incident on one body due to  
surrounding ones is generated by point radiators or scatterers. In  the present 
problem, however, waves impinging on one slender body are generated continuously 
from all sections of the adjacent body, and vice versa. A simplified view of the flow 
would suggest that interaction occurs between body sections which lie in the same 
transverse plane. The three-dimensional problem is thereby reduced to  a sequence 
of two-dimensional problems distributed along the lengths of the bodies. This strip-like 
approach allows wave energy to  flow only in the transverse direction, and consequently 
exaggcrates interaction effects near the resonant frequencies of oscillation where wave 
energy is trapped between the two bodies. 

Clearly, three-dimensional effects play a role in the dissipation of wave energy 
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reflecting between two slender bodies. The present study accounts for longitudinal 
interactions among the sections of each body as in unified theory, and interactions 
of all sections of one body with all sections of the other. The far-field wave disturbance 
due to each body is modelled by distributing three-dimensional wave sources and 
horizontal dipoles on its axis, keeping both wavelike and non-wavelike terms in their 
definitions. A t  each section of one body, the far-field disturbance of the other body 
is approximated by a plane wave propagating perpendicularly to its axis. Unlike 
strip theory, however, the longitudinal distribution of wave amplitude depends on 
the initially unknown source-strength and dipole-moment distributions. These 
distributions are found by solving a pair of coupled integral equations, obtained by 
asymptotic matching techniques, with the forcing terms being the unified-theory 
solutions of the single-body radiation problems. 

A formal statement of the linearized wavebody-interaction problem is given in 
$2. In  $3 we introduce the principal slender-body approximations and summarize 
the derivation of unified theory for the radiation and beam-wave-diffraction problems. 
The solution of the twin-body wave-interaction problem is presented in $4. It is shown 
that by allowing the body length to increase, while the frequency is kept constant, 
the two-dimensional approximation derived by Ohkusu (1974) is recovered. Section 5 
outlines the numerical solution of the integral equation and the subsequent 
evaluation of the heave and pitch added-mass and damping coefficients and exciting 
forces. The latter are obtained by deriving a far-field reciprocity relation between the 
solutions ofthe radiation and diffraction problems. Computations of the hydrodynamic 
coefficients and exciting forces are compared in $6 with results from a very accurate 
three-dimensional panel method. Extensions of the technique to more general cases 
are discussed in 8 7 .  

2. Problem formulation 
We consider a floating body which is free to oscillate about a fixed mean position. 

The translational and rotational motions are defined with respect to a Cartesian 
coordinate system where the x- and y-axes coincide with the free surface and the z-axis 
is oriented upwards. The fluid domain has infinite depth and horizontal extent. We 
assume that the fluid is inviscid and incompressible, and the fluid motion irrotational; 
and so we may pose a boundary-value problem in terms of a scalar velocity potential. 

The boundary conditions can be applied at the mean positions of the free surface 
and the body boundary if the amplitudes of the ambient waves and body motions 
are small relative to a characteristic dimension of the body and the wave amplitude 
is small relative to the wavelength. The boundary-value problem for the velocity 
potential can then be solved in the frequency domain by factoring out the oscillatory 
time-dependence eiwt, where w is the circular frequency and t is time, and solving for 
the complex potential $(x, y, z )  which is time-independent. Henceforth, the oscillatory 
time dependence will be implicit. Any physical quantity can be obtained by taking 
the real part of the product of the corresponding complex quantity and the oscillatory 
time dependence. 

The complex velocity potential $ must satisfy 

$z-K$ = 0 on z = 0, 

V$+O asz+-m, 
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where Y denotes the fluid domain, K = w2/g is the wavenumber in water of infinite 
depth and g is the acceleration due to gravity. 

The body boundary condition is easier to treat after making the linear 
decomposition 

6 

j=1 
4 = + $7) + $ j  E j ,  (2.4) 

where A is the amplitude of the free-surface elevation due to the incident wave and 
Ej (j = 1, . . . , 6 )  are the complex amplitudes of bhe rigid-body oscillations. The modes 
j = 1 ,2 ,3  correspond to  translation in the x-, y- and z-directions and modesj = 4,5,6 
to rotation about the same axes respectively. The normalized velocity potentials #,,, 
$ j ,  and $7 govern the incident, radiated and diffracted wave flows, 

Regular deep-water plane-progressive waves are described by the velocity 
potential 

(2.5) 

where /3 is the angle between their direction of propagation and the positive x-axis. 
The diffraction velocity potential $7 accounts for interaction between the body, fixed 
a t  its mean position, and the incident waves. Thus, on the body’s wetted surface S,, 
it offsets the incident-wave normal velocity 

$,, = i-exp[K(z-ix 9 cosp-iy sinp)], 
w 

n.U$, = -n*U$, on S,, (2.6) 

where the unit normal vector n is taken to point out of the fluid domain. 
The radiated waves are generated by the forced oscillation of the body in otherwise 

calm water. The radiation velocity potentials satisfy the inhomogeneous conditions 

n* W#j = iwnj on S,  (i = 1 , 2 , .  .., 6) ,  (2.7) 

(2.8) 

Since nj (i = 1 ,  ..., 6) are real, the real parts of $j satisfy a homogeneous body 
boundary condition. This property will be exploited in the derivation of the 
slender-body theory outlined in the next section. 

Finally, the problem is not well-posed unless the radiation and diffraction velocity 
potentials represent outgoing waves as R + 00, where R2 = x2 + y2. This requirement 
is known as the radiation condition. 

where the normal components nj are defined by 

n = (nl, n2, n3), x x n = (n4, n5, n6). 

3. The unified slender-body theory 
We denote the length of a body by L ,  its characteristic transverse dimension by 

B and assume the slenderness parameter e = B / L  to  be small compared to unity. If 
the longitudinal axis coincides with the x-axis and L = 0(1), then near the body 
x = O(1) and y,z = O ( E ) .  Scaling arguments suggest that, in the near field, the 
three-dimensional problem can be replaced by a collection of two-dimensional 
problems in transverse planes. This approximation is not valid in the far field where 
the flow is still three-dimensional. The unified theory developed by Newman (1978) 
accounts for longitudinal hydrodynamic interaction by enforcing the compatibility 
of the two-dimensional near-field solutions and the three-dimensional far-field 
solution. This section summarizes the unified-theory solutions of the radiation and 
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the beam-wave diffraction problems for a single body in a form that will be convenient 
for the formulation and solution of the twin-body problem presented in $4. 

3.1. Inner solution 
A general inner solution for both the radiation and diffraction problems is constructed 
by superimposing a particular and a homogeneous component. The particular 
solution $(y, z ;  x) satisfies 

$,-Kll. = 0 on z = 0, (3.2) 

V z D $ r O  asz+-m, (3.3) 
and a condition of outgoing waves for large K IyI. 

I n  the two-dimensional radiation problem, only modes j = 2,3 ,4  are meaningful. 
The corresponding velocity potentials satisfy the inhomogeneous body boundary 
conditions 

n*WzD$j = iwnj on C(x)  (j = 2,3,4) ,  (3.4) 
where C is the body cross-section in a constant-x plane. Solutions for the rotational 
pitch and yaw modes (j = 5 ,6  respectively) are defined in terms of the two-dimensional 
heave and sway solutions by the relations 

$&I, 2; 4 = - xll.&, 2; 4, (3.5~) 

$&A z ;  4 = x$-,(y, 2; 4, (3.5b) 

The velocity potential of a unit-amplitude wave propagating in the positive-y 
where terms quadratic in the body slenderness have been neglected. 

direction is given by 

9 - i EeK(Z-iY). (3.6) 
O -  0 

The sum of the incident-wave and diffraction potentials must therefore satisfy 

n*VzD($o+$,) = 0 on C(x).  (3.7) 
The particular solutions may be decomposed into parts which are symmetric and 
antisymmetric with respect to the longitudinal centreplane y = 0. Henceforth, we will 
use s and a subscripts to denote the symmetric and antisymmetric parts of these 
solutions respectively. 

The homogeneous components of the near-field solution account for hydrodynamic 
interaction between adjacent transverse sections. Newman (1978) has shown that,  for 
the antisymmetric modes of motion, the strength of the interaction is of higher order 
and, to  leading order, the inner solution is given by the particular component. I n  the 
radiation problem, homogeneous solutions for the symmetric modes are the real parts 
of the velocity potentials $ j  (i = 3,5).  This can be easily verified from the fact that 
the boundary conditions (3.4) are purely imaginary. In  the diffraction problem, a 
homogeneous solution is simply the sum of the incident-wave and diffraction 
potentials. We denote the general solutions of the radiation and diffraction problems 
by q5j and q57 respectively, and write them in the form 

( 3 . 8 ~ )  q 5 j k  Y, 2) = $ j ( %  2; 2) + q4 ( $ j ,  + $; S)’ 

(3 .8b)  
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where @; denotes the complex conjugate of @j; Cj and C ,  are unknown interaction 
coefficients which depend parametrically on the x-coordinate. They will be determined 
from the asymptotic matching with the outer solution. 

I n  order to match the inner and outer solutions, far-field asymptotic expansions 
of the inner solutions are required. We denote by G2,,(y, z )  the velocity potential due 
to an oscillatory wave source located a t  the origin of the coordinate system. This 
potential is also known as the two-dimensional Green function and is derived in 
Wehausen & Laitone (1960). It satisfies (3.1)-(3.3) and a condition of outgoing waves 
for large K IyJ. The potential of an oscillatory horizontal dipole, which we denote by 
H2D(y, z ) ,  is obtained from the relation 

(3.9) 

Stated in terms of the source and dipole potentials, the outer expansions of the 
particular solutions are 

~j(y, z ;  x, gj(x) G2D(y, z, +pj(x) H2D(y> z,  (i = 2, * * * ,  6), (3*10a) 

~ 7 ( Y >  z ;  x, g 7 ( x )  G2D(y, z ,  +p7(x)  H2D(y? z ) ,  (3.10b) 

where gj, CT, are complex source strengths and pj ,p7  are complex dipole moments. 
Henceforth, we shall assume these quantities are known at each transverse section 
of the ship. This implies that  the particular solutions are known a t  a continuum of 
longitudinal locations. In  practice, of course, the two-dimensional problem is solved 
at a finite number of sections. We have assumed that the bodies are symmetrical with 
respect to the y = 0 plane; therefore either the source strength or dipole moment is 
zero for a particular mode of motion. We will neglect this fact and continue as if both 
the source and dipole are present. 

Substituting (3.10a, b) into (3.8a, b) respectively gives the complete outer 
expansions of the inner velocity potentials 

q5j N [gj + Cj(rj + 031 GzD - iCj uj eKz cos Ky 

+pj H2Dj ( 3 . 1 1 ~ )  

9 
7 0  

q5, N (1 + C, )  CT, G2D + iC- eKz cos K y  

+p7 H2D% (3.11b) 

where we have used the identity 

G,*, = G2D - i eKz cos Ky. (3.12) 

The outer expansions have been purposely displayed on two lines. The terms on the 
first line correspond to the symmetric part of the disturbance while the term on the 
second line corresponds to the antisymmetric part. We will continue this practice 
throughout the remainder of this paper. 

3.2. Outer solution 
The symmetric and antisymmetric parts of the potential are represented in the far 
field by distributions of three-dimensional oscillatory sources and horizontal dipoles 
respectively, on the body’s centreline. We denote the three-dimensional oscillatory 
source potential by G(x-6, y, z) ,  where ( E , O ,  0) is the source point and (x, y, z )  is the 
field point. It satisfies (2.1)-(2.3) and a condition of outgoing waves a t  infinity. The 



Wave interaction between adjacent slender bodies 279 

potential of an oscillatory dipole oriented in the positive-y direction, which we denote 
by H(x-E, y, z ) ,  is obtained from a relation which is the three-dimensional analogue 
of (3.9). Using these definitions, the radiation and diffraction solutions are approxi- 
mated in the far field in the form 

r 

(3.13) 

where qj and d j  are, respectively, complex source strength and dipole moment 
distributions which are initially unknown, and L indicates that the range of 
integration is over the length of the body. 

In  order to facilitate the asymptotic matching with the inner solution, an inner 
expansion of the outer solution must be obtained in terms of G2D. Such an expression 
is given by 

$ j h  Y 9 2) = q,@) G,D(Y, 2 )  - L,kj ; 4 
+dj(z)H,D(y,~)+O(Kr) (i = 1,2, ..., 7) ,  (3.14) 

where r = (y2 + z2): and 

L,(q; z) = ici +?IN q ( 4  

is a linear integral operator on q(z). 

3.3. Matching 

The outer expansions of the inner solutions can be matched with the inner expansions 
of the outer solutions in some intermediate domain. The leading-order terms in (3.1 1)  
and (3.14) for small r are the dipole potentials which behave like l/r. Equating the 
factors of the dipole potentials gives 

dj = Pj. (3.16a) 

d7 = I%. (3.16b) 

As we have already mentioned, the remaining antisymmetric terms in the inner and 
outer expansions are of higher order. Therefore the radiation solutions for antisym- 
metric modes and the antisymmetric part of the diffraction solution are strictly 
two-dimensional in the inner region. 

Next we match the symmetric terms in (3.11) and (3.14). The leading-order 
symmetric terms are the source potentials which behave like logr. Equating the 
factors of the source potentials gives the relations 

q j  = u,+c,(aj+ai*), 
q7 = u, + c, u,. 

( 3 . 1 7 ~ )  
(3.17 b) 

Equating the remaining terms in (3.11) and (3.14) which are O(l), we obtain 

L,(q,; z) = + iCj ui, ( 3 . 1 8 ~ )  

9 L,(q,;z) = -i-C,. w (3.18b) 
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4 

FIGURE 1. Geometric configuration of two adjacent slender bodies. 

I n  practice, (3.18a, b )  are used to  eliminate Cj  and C, from (3.17a, b)  respectively. This 
leads to linear integral equations for qj and 4,. Further details on the theory and errors 
involved in the inner and outer expansions are given in Newman (1978). 

4. Far-field approximation for twin slender bodies 
Next we consider two identical slender bodies arranged in a catamaran configuration 

as illustrated in figure 1 .  We require the bodies to be far enough apart to permit 
neglect of non-wavelike hydrodynamic interaction. Quantities associated with the 
body on the positive or negative side of the y = 0 plane are denoted by + or - 
superscripts respectively. The total velocity potential associated with S+, (Sg)  is ++ +#: (+- +&),where $+(#-) is the single-body radiationdisturbance and q5; (&) 
accounts for interaction with S; (Si). The radiation disturbances are known from 
solving the radiation problem for each body separately, but the interaction potentials 
are initially unknown. 

4.1. Outer solution 
At distances which are large compared to its beam, the interaction disturbance caused 
by S+, is represented in the form 

&+ = s, d 5 d ( E )  G(z- f ; ,  Y -to, 2) 

+ J’, df; d : ( 8  H ( x  - f ; ,  Y -@, Z ) ,  

4- +$c = l ,d t  [q-(E) + 4 m 1  G(z-f;,  Y +to, z )  

- 5, 

(4.1) 

where the ‘interaction’ source strength qf and dipole moment d l  are unknown. 
Similarly, the total far-field disturbance caused by S,  is 

d ~ [ d - ( ~ ) + d ; ( ~ ) l H ( z - ~ ,  Y + W , Z L  (4.2) 

where qy and d; are also unknown, but q- and d- are known from solving the 
unified-theory integral equation for each body. The bodies are equidistant from the 
y = 0 plane ; therefore the total potential must be either symmetric or antisymmetric 



Wave interaction between adjacent slender bodies 281 

about that  plane, depending on the mode of motion. This means that the source 
strengths and dipole moments must satisfy the conditions 

q- = +q+,  d- = f d + ,  (4 .3a)  

(4 .3b)  

where the upper and lower signs apply to the symmetric and antisymmetric cases 
respectively. By virtue of these equations, we hereafter omit the + and - 
superscripts from the source strengths and dipole moments. The derivation which 
follows applies to  the symmetric case, but the antisymmetric solution can be obtained 
simply by reversing the signs of the appropriate terms in the symmetric solution. 

d- - - qy = zkq:, 1 - +d;, 

The inner expansion of (4 .1)  near S& is given by 

4 t h  YYZ) = QI(")G,D(y--0,O)--L,(qr;") 

+d, (z )H, , (y -$D,O)+O(Kr+) ,  (4 .4)  

where r+ = [(y-$0)2+z2]1 and L,(q,) is defined in (3 .15) .  The above expression is 
obtained by substituting qI ,  d, for q j ,  d j  in (3.14) and shifting the two-dimensional 
source and dipole origin to (y, z )  = (to, 0). 

4.2.  Inner solution 

The interaction wave disturbance in the vicinity of one body due to the presence of 
the other is, in general, a function of the x-coordinate. Its variation in the longitudinal 
direction depends both on the frequency of oscillation and on the separation between 
the bodies. I n  order to  justify a two-dimensional inner solution, as in unified theory, 
the interaction disturbance must not vary more rapidly in the longitudinal direction 
than the geometry. This is a reasonable assumption for wavelengths comparable to 
the body length, as long as the separation distance is large enough to justify the 
omission of non-wavelike interaction. For wavelengths on the order of the body beam, 
the waves radiated by each body are primarily focused in the transverse direction 
near that  body and become circular in the far field. Therefore a two-dimensional inner 
approximation is still reasonable if the separation distance is on the order of a few 
beams, but not if i t  is comparable to the body length. Fortunately, interactions are 
weak at high frequencies and large separation distances. 

Thus, we assume that (4- +$;), which is due to  the body S,, can be approximated 
in the vicinity of Sg by a plane wave propagating perpendicularly t o  its axis with 
an amplitude which varies slowly along its length. The potential of such a wave is 
given by 

(4 .5)  

where u+ is the complex amplitude which depends parametrically on the x-coordinate. 
It is determined by Taylor-expanding (4 .2)  and (4 .5)  about (y, z )  = (?$I, 0) and 
equating the leading-order terms : 

$- (2, y, z )  + $1 (x, y, z )  N i gu+(x) w eK[z-i(u-P)1, 

The numerical results to be presented in 56 provide ample justification for this 
approximation. 
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The inner solution for Sg follows from the corresponding solution (3.8b) of the 
beam-wave diffraction problem in the form 

q5c(x, y, z )  = ol+(x) $7+(y, z )  + C:(x) i g e K z  cos K (y-iD) + $7: .I, (4.7) 

where the unknown coefficient C: accounts for longitudinal hydrodynamic interaction. 
The outer expansion of the inner solution is obtained in the same manner as (3.11 b )  
and is given by 

[ w  

+; N ( a + + ~ : ) u , +  G ~ ~ ( ~ - + D , O ) + ~ C : ~  w eKZcosK(y-20) 

-k HZD(y - !$, 0) + o(Kr+). (4.8) 

4.3. Matching 
The inner expansion (4.4) can be matched to  the outer expansion (4.8) to obtain a 
set of equations for the unknowns q I ,  d ,  and C:. Equating the leading-order 
antisymmetric and symmetric terms, we have 

d, = a+pf, ( 4 . 9 ~ )  

q, = a+a,+ + C: u: . (4.9b) 

Equating the order-one terms gives 

-L,(q,) = i c p .  
0 

After using ( 4 . 9 ~ )  to eliminate C: from (4.9b), we have 

d,  = a+p:, 

qI = a+a: +i-Cr: L,(qI) .  
w 

9 

(4.9c) 

(4.10a) 

(4.10b) 

Next we define a dimensionless inner source strength and dipole moment by 

s7 = -1-u7, (4.11a) 
. w  

9 
. w  m, = - i -p7 ,  
g 

and the linear operators 

(4.1 1 b) 

( 4 . 1 2 ~ )  

(4.12b) 

By substituting (4.6) in (4.10a,b) and using the above definitions, we obtain the 
coupled integral equations 

(1+s,Lu--s,Lij)qI + (87LH)dI = s7[L,(q)-LL,(d)], (4.13a) 

(4.13 b)  

with q and d having been determined from the solution of the single-body problem. 
One unknown can be eliminated by multiplying ( 4 . 1 3 ~ )  and (4.13b) by m7 and S, 

( -m7 L,) -k ( + m7 L i )  d1 = m7[L,(q) -Lk(d)I ,  
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respectively and then subtracting one from the other. This leads to the relation 

(4.14) 

which can be substituted into ( 4 . 1 3 ~ )  to obtain a single integral equation for pI: 

[ 1 - s7 L; + m7 L; + s7 L,( 1 + m7 LH)] qI(x) = s 7 [ L ~ ( p )  - L,(d)]. (4.15) 

Equations (4.14) and (4.15) are the principal result of our analysis. 
A special case of (4.13a, b )  deserves some attention. Assume that the body 

geometries have a uniform sectional shape in the longitudinal direction and that their 
lengths tend to infinity while the separation between the bodies and the frequency 
of oscillation are kept constant. I n  the limit, the problem reduces to the purely 
two-dimensional one of two interacting cylinders considered by Ohkusu (1974). This 
special case effectively corresponds to  the high-frequency limit of (4.13), since the 
wavelength/body-length ratio tends to  zero. The operator L ,  defined by (3.15), which 
accounts for the longitudinal hydrodynamic interaction in unified theory, tends to 
zero at high frequencies. Moreover, the operators defined by (4.12) reduce to  the 
simple two-dimensional form 

( 4 . 1 6 ~ )  

(4.16 b)  

where the two-dimensional wave source and dipole have been defined in $3. Upon 
substituting into the coupled integral equations (4.13), they reduce to the algebraic 
equations 

( l A S 7  q I  -k ('% L H )  d I  = %[&(!l)-L,(d)l, ( 4 . 1 7 ~ )  

(-m7LI3Q1+(1 +m,L,)d,  = m,[L,(q)--L,(d)l, (4.17 b )  

with the interaction source strength pI and dipole moment d ,  as unknowns. Ohkusu 
has derived equations similar to  (4.17) by analytically summing the infinite series 
obtained by posing successive reflection/transmission problems. The main difference 
between Ohkusu's result and the present one is that Ohkusu uses far-field approxi- 
mations of the wave singularities GZD and H,D, whereas their exact forms are kept 
here. This introduces non-wavelike effects into the two-dimensional approximation. 
The numerical results presented in $6 indicate that these effects are important a t  low 
frequencies. 

5. Hydrodynamic forces 
I n  keeping with the decomposition of the velocity potential, it is standard practice 

in the field of ship motions to  decompose the hydrodynamic pressure force into 
added-mass and damping coefficients, associated with forced oscillation in various 
modes, and a wave-induced exciting force. The added-mass and damping coefficients 
aij and b,  and the exciting force X i  are defined by 

w2a-.-iwb.. = -iwp niq5jdS ( i , j  = 1,2,  ..., 6), (5.1) 
a3 23 J J,, 

10 P L M  165 
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FIGURE 2. Heave added-mass and damping coefficients of twin semi-submerged circular cylinders 
versus wavenumber, for two separation distances D / B ,  where B is the cylinder diameter and D is 
the distance between their centres. Two versions of the two-dimensional limit of the far-field 
approximation are shown : with the exact form of the wave-source potential (-) and with the 
asymptotic form (--.-). Also shown for comparison are values from a numerical solution 
(Sclavounos 1985b) for one (----) and twin ( x )  cylinders. The coefficients are non- 
dimensionalized by the fluid density p ,  the circular frequency w ,  and the cross-sectional area 
S = gxB' or S = :nB2 of one or two semi-submerged cylinders respectively. 

where n, is defined by (2.8) and q5j, q57 are defined in $ 2 .  The above expressions come 
from substituting $,, 9, in the Bernoulli equation and integrating over the submerged 
surface to get the ith component of the pressure force on the body. 

For a particular transverse secttion, two-dimensional coefficients A,,, B,, and 
exciting force xi are defined analogously by 

02A,,(x)-iwB,j(z) = -iwp n,$idZ ( i , j  = 2,3,4) ,  (5.3) 

x,(z) = - i w p  n,($o+@7)dZ ( i  = 2,3,4) ,  (5.4) 

LX, 
s,,,, 

where ki, $7 are the particular solutions defined in $3. 
Our objective is to express the added-mass, damping and exciting force for a 

twin-hull ship in terms of the two-dimensional properties of one hull and the solutions 
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FrauRE 3. Heave added-mass and damping coefficients of twin semi-submerged spheroids with 
diameter-to-length ratio and separation-to-length ratio a;  according to far-field approximation 
(-), strip theory (-.-) and three-dimensional numerical method ( x ). Coefficients are non- 
dimensionalized by displaced volume V of both spheroids and wavenum ber K is non-dimensionalized 
by radius of one spheroid. 

of the unified-theory integral equation and the far-field approximation for twin 
slender bodies. We present these relations only for the heave and pitch modes, but 
similar ones can be easily derived for other modes of motion. I n  the equations which 
follow, S and T superscripts denote coefficients for single and twin slender bodies 
respectively. 

The heave and pitch coefficients of a single slender body are put in the desired form, 

w2ag5-iwh$5 = x2dx [w2A:,(x)-iwB:,(x)]-iw d x q ( x )  B:,(x), (5.5b) 

by substituting the complete inner solution (3 .8a)  into (5.1) and using the definitions 
(5 .3)  and (3 .5a) .  The first integral in each of the above equations corresponds to the 
strip-theory contribution and the second term is a correction which accounts for 
longitJudinal interaction. 

s, JL 

10-2 
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FIGURE 4. Pitch added moment of inertia and damping of twin spheroids with separation-to-length 
ratio 4. Coefficients are non-dimenuionalized by longitudinal moment of inertia I, ,  of volume 
displaced by twin spheroids. 

In the case of twin slender bodies, i t  is only necessary to integrate over one body 
because the integrand of (5.1) is symmetrical about the y = 0 plane regardless of the 
symmetry or antisymmetry of the flow. After substituting the inner representation 
(4.7) of the interaction potential in (5.1) and using the definition (5.4). the heave and 
pitch coefficients can be put in t'he form 

(,i = 3,5).  

where Q ~ , ~  is known from solving the far-field approximation (4.15). The first two 
terms contain the contribution from forced oscillation of each body without the 
presence of the other and the integral accounts for interaction between the bodies. 

The exciting forces can be obtained either by solving the diffraction problem 
directly or by using a far-field reciprocity relation to express t,he exciting force in mode 
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AKB 

FIGURE 5. Heave added-mass and damping coefficients of twin spheroids 
with separation-to-length ratio 4. 

j in terms of the j t h  mode radiation potential. We have chosen the latter approach 
because of its simplicity. 

For a single slender body, Sclavounos ( 1 9 8 5 ~ )  has derived the relation 

- iKz cosp (i = 3,5) ,  (5.7) 

where qj is the outer source strength obtained by solving the unified-theory integral 
equation. The above equation is derived by applying the Haskind relations (Haskind 
1957) to the far-field representation of the radiation velocity potential expressed in 
terms of a source distribution. 

For twin slender bodies, the generalization of (5.7) takes the form 

= - {[!I&) + QI, j ( 4 1  cos (iKD sin/?) dx e-iKz C O s  f i  
3 

+sin/?dl,i(x) sin ( iKD sin/?)} (j = 3,5) ,  (5.8) 

where qi is the single-hull radiation source strength, and qI, i, dI, are the interaction 
source strength and dipole moment which come from solving the integral equations 



288 

2.5 

1.5 

0.5 

-0.5 

- 1.5 I 

b55 

wpI21 2.0 

1 .O 

0 
fKB 

FIGURE 6. Pitch added moment of inertia and damping coefficients of 
twin spheroids with separation-to-length ratio 4. 

(4.14)-(4.15). The presence of the last tcrm in the integrand of (5.8) is somewhat 
surprising because one might expect intuitively that the antisymmetric disturbance 
caused by a dipole distribution would not contribute to the symmetric-mode exciting 
forces. However, the dipole distributions on the two bodies oppose each other, so they 
create a symmetric disturbance which resembles a quadrupole in the far field. 

6.  Numerical results 
To validate the far-field approximation, we have computed the heave and pitch 

hydrodynamic coefficients and exciting forces for twin spheroids whose major axes 
coincide with the free surface. The slenderness ratio of each spheroid is one-eighth 
and results are presented for separation distances of one-quarter and one-half the 
length of the spheroids. The far-field approximation is compared with strip theory 
and a three-dimensional boundary-integral formulation. 

A brief description of the numerical scheme is given here. We use an algorithm 
developed by Nestegard & Sclavounos ( 1984) to compute the two-dimensional sway 
and heave coefficients of a circular cylinder over a range of frequencies. The algorithm 
also computes the two-dimensional source strength and dipole moment associated 
with heave and sway respectively. The hydrodynamic properties of any transverse 
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FIGURE 7. Section heave added-mass and damping for twin spheroids with separation-to-length 
ratio $ versus longitudinal position. Dimensionless wavenumber !jKB = 0.7. 

section of a single spheroid can be obtained by interpolating the data for a 
two-dimensional circular cylinder at the appropriate dimensionless frequency. The 
two-dimensional properties are needed a t  a finite number of transverse sections to 
solve the unified-theory integral equation for a single spheroid. The unified-theory 
solution in turn serves as the primary input to the far-field approximation. 

The unified-theory integral equation and the far-field approximation (4.15) are 
solved by the collocation method. The longitudinal axis is divided into equal-length 
segments and the unknown source strength is approximated by quadratic B-splines 
with unknown coefficients. Each spline function spans three segments so that the 
continuity of the source strength and its first derivative are preserved. In  most cases, 
20 segments provide sufficient accuracy. A system of linear algebraic equations results 
from substituting the spline representation into the continuous form of either integral 
equation. This involves integrating the product of each spline function and the kernel 
of the integral equation. The singular terms in the unified-theory kernel are integrated 
analytically and the remaining regular terms are integrated numerically by Simpson's 
rule. 

We first use the limiting case (4.17a, b )  of the far-field approximation to  compute 
the heave added-mass and damping coefficients of two semi-submerged circular 
cylinders and compare these results with a two-dimensional numerical solution 
developed by Sclavounos (1985b). The numerical solution is based on a boundary- 
integral formulation of the exact linear problem, includes all hydrodynamic inter- 
actions between the two cylinders, and has been verified through comparison with 
Wang & Wahab (1970) and Ohkusu (1970). The coefficients are plotted in figure 2, 
in dimensionless form, against the dimensionless wavenumber +KB for distances 
between the cylinder centres of two and four times their diameter. Also shown for 
comparison are the corresponding coefficients of a single circular section. Two 
versions of the two-dimensional, far-field approximation have been tried. I n  the first, 
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FIGURE 8. As figure 7 except iKB = 1.1. 

the wave-source potential in (4.16) is replaced by an asymptotic approximation which 
is valid for large K Iyl, while in the second its exact value is retained. The results from 
both methods are in very good agreement with the exact numerical solution for 
moderate-to-high frequencies, except near the lowest resonant frequency, and for a 
moderate separation distance. However the second method, which includes non- 
wavelike terms in the wave-source potential, performs substantially better than the 
first a t  low frequencies. This suggests that  a similar improvement can be expected 
if the exact form of the three-dimensional wave-source potential is kept in (4.5) 
instead of its far-field asymptotic form. 

Two distinct types of resonance can be observed in figure 2. The first type occurs 
near the wavenumbers 4KB N 0.5 and 0.25 for separation distances d / B  = 2.0 and 
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FIGURE 9. Modulus and phase of heave exciting force on twin spheroids with separation-to-length 
ratio according to far-field reciprocity relation at /3 = 0 (-), /3 = 45 (---), and /3 = 90 
(-----), c orresponding tick marks denote three-dimensional numerical results. Modulus is 
non-dimensionalized by waterplane area A ,  of twin spheroids. 

4.0 respectively, and is attributable to  a water-column-like behaviour of the enclosed 
portion of the free surface. This effect is noted by Marthinsen & Vinje (1985) and 
becomes more pronounced as the distance between the sections decreases. A second 
type of resonance occurs near the wavenumber i K B  = in in the results for D / B  = 4. 
The wavelength corresponding to  this wavenumber equals the length D - B of the 
enclosed free surface, so standing waves are present in the region between the two 
cylinders. There is of course an infinite number of higher wavenumbers where 
standing-wave resonance occurs. Although the behaviour of the coefficients may 
appear singular at the resonant wavenumbers, the peaks are actually finite because 
some wave energy leaks under the cylinders and radiates to the far field. Nevertheless, 
the elevation of the standing waves is quite large, making the validity of linear theory 
questionable in this regime. 

We next compare results from the far-field approximation for twin spheroids with 
values from strip theory and a three-dimensional numerical solution. The numerical 
solution is described by Breit, Newman & Sclavounoa (1985) and is based on a 
boundary-integral formulation of the exact linear problem. It has been validated 
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FIGURE 10. Modulus and phase ofpitch exciting moment on twin spheroids with separation-to-length 
ratio +. Modulus is non-dimensionalized by longitudinal moment of inertia I ,  of total water plane 
area. 

through comparison with single-spheroid results from Kim (1965) and Yeung (1973), 
and we believe the results are accurate to three significant figures. We emphasize that 
the far-field approximation and this three-dimensional numerical solution are 
completely independent. 

Heave and pitch added-mass and damping coefficients for a separation distance 
DIL = are shown in figures 3 and 4. For two reasons this case is actually a fairly 
severe test of the far-field approximation. First, the bodies are close together; the 
distance between their surfaces at the mid-section is only one diameter. Secondly, 
a spheroid has blunt ends which violate our initial assumption that both the source 
strength and its longitudinal derivative are smooth a t  the ends. Nevertheless, the 
far-field approximation is in very good agreement with the three-dimensional 
numerical results, even at  fairly low wavenumbers. Since the far-field approximation 
performs so well for this case, we expect i t  to perform equally well, if not better, when 
the bodies are further apart or have more slender shapes a t  the ends. 

The large discrepancy in the strip-theory results a t  low wavenumbers was 
anticipated since the same qualitative differences between strip theory and unified 
theory are present even for a single slender body. Strip theory is strictly valid only 
for short waves. 
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FIGURE 11. Heave exciting force on twin spheroids with separation-to-length ratio i. 

Results for the case D / L  = ?j are presented in figures 5 and 6. Once again, the 
agreement between the far-field approximation and the numerical model is very good. 
The irregularity in the curve a t  $KB = is evidence of resonance between the hulls. 
This wavenumber range corresponds to wavelengths which are nearly equal to  the 
minimum distance between the hulls. It also coincides with the wavenumber where 
resonance occurs in the comparable two-dimensional interaction problem. Although 
the strip-theory results appear to behave quite well in the resonant regime, strip 
theory actually breaks down, as has been noted by Lee (1976). In  figures 7 and 8, 
we show the longitudinal distribution of added-mass and damping according to strip 
theory and the far-field approximation at two wavenumbers. Away from resonancc 
a t  $KB = 0.7 (figure 7) ,  there are only minor differences between the two methods. 
However at iKB = 1.1  (figure 8), there is an irregularity in the strip-theory results 
in the vicinity of x / L  = 0.28 (and an identical one a t  the reflection of this point 
about x / L  = 0). This means that standing-wave resonance is occurring in the two- 
dimensional problem a t  that  longitudinal location because strip theory assumes that 
wave interaction between the bodies is restricted to  transverse planes. The rapid 
longitudinal variation in the flow is physically unrealistic and violates the underlying 
assumption of slender-body theories that the flow varies slowly in the longitudinal 
direction. The smooth distributions predicted by the far-field approximation indicate 
that i t  accounts for longitudinal interaction in a physically more reasonable manner. 
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FIQURE 12. Pitch exciting moment on twin spheroids with separation-to-length ratio t .  

Heave and pitch exciting forces for three wave directions have been calculated from 
the far-field reciprocity relation (5.8). The modulus and phase of the heave exciting 
force and pitch exciting moment are plotted in figures 9-12 together with results from 
the three-dimensional numerical method. The latter results are based on a direct 
solution of the diffraction problem rather than a reciprocity relation, and are believed 
to be accurate to a t  least two decimal places. Once again, the accuracy of the far-field 
approximation is remarkable. 

7. Conclusions and extensions 
The far-field approximation has been found to be very robust for all tested 

frequencies and for moderate separation distances. This is surprising because the 
initial assumption that the bodies are in the far field of each other appears to be 
invalid in this case. At higher frequencies where resonance occurs, the far-field 
approximation appears to be physically realistic while strip theory does not. The 
reciprocity relations for the exciting force appear to be equally reliable. 

This approach can be easily adapted to  problems involving interaction between 
two or more independent slender bodies. We have derived a system of coupled integral 
equations for the case of two independent slender bodies. A practical problem that 
can be treated in this manner is that of predicting the relative motions of two 
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adjacent, independent ships. When multiple independent bodies are present, it is 
convenient to decompose the radiation problem into separate problems where each 
body undergoes a forced oscillation while all other bodies are fixed at  their mean 
positions. Extensions to wave interactions between slender bodies in acoustics or 
electromagnetics can follow lines similar to the present method. 
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